

Latin American Data in Science, v.1, n.2 datainscience.com.br ISSN: 2763-9290

The effect of short-term meteorological disturbances on the submerged aquatic vegetation and associated fauna in the Patos Lagoon estuary, southern Brazil: a dataset.

Recebido: 16/07/2021 | Aceito: 21/10/2021 | Publicado: 12/11/2021 https://doi.org/10.53805/lads.v1i2.26

Dairana Misturini^{*1,2}, Marianna Lanari³, Valéria Lemos⁴, Leonir André Colling⁵

ABSTRACT

Occluded fronts are naturally cyclogenic areas that have been intensified by global warming. Studies evaluating the effects of occluded fronts in the submerged aquatic vegetation (SAV) and its associated fauna in shallow estuarine areas may provide insights on the impacts of climate change-induced extreme weather events on coastal ecosystems functioning. The present dataset describes data on benthic fauna and flora in the Patos Lagoon Estuary (PLE), in southern Brazil, seasonally obtained during intense occluded fronts. Using a hierarchical sample design, based on Beyond BACI protocols (Before/After and Control/Impact), fauna and flora were sampled before and after four occluded fronts passage throughout 2019. Three habitats were sampled: SAV Meadow, SAV Edge and adjacent Sandflat. A total of 432 macrozoobenthic samples (216 samples for stratum); 216 samples for bellow and aboveground biomass, vegetation coverage, canopy height and marine macrophytes morphology; 144 samples by sedimentology and organic matter; 72 water column depth measurements; and 8 temperature and salinity measurements were collected during the study period. The data is available at the Global Biodiversity Information Facility (GBIF), in Darwin Core standard format (DwC), organized according to the OBIS-ENV-DATA model, with CC-BY-NC-4-0 license for use. The present dataset adds to the comprehension of the temporal variability of estuarine benthic communities in subtropical systems, and how short-term meteorological process can affect zoo and fitobenthic communities in the context of climate changes.

Keywords: Benthic Fauna; Seagrass; Sandflat; Occluded Front; Sedimentary Organic Matter.

¹ Programa de Pós-graduação em Oceanografia Biológica – Universidade Federal do Rio Grande, Rio Grande, RS, Brasil. dairana.dai@gmail.com.

² Universidade Federal de Santa Catarina, Coordenadoria Especial de Oceanografia, Laboratório de Biodiversidade Costeira, Florianópolis, SC, Brasil.

³ Universidade Federal do Rio Grande, Laboratório de Ecologia Vegetal Costeira, Rio Grande, Brasil.

⁴ Universidade Federal do Rio Grande, Laboratório de Ictiologia, Rio Grande, Brasil.

⁵ Universidade Federal de Rio Grande, Laboratório de Ecologia de Macroinvertebrados Bentônicos, Rio Grande, Brasil.

PRIOR PUBLICATIONS

MISTURINI, D. A Influência de Sistemas Frontais sobre as Assembleias Bentônicas de Pradarias de Fanerógamas Submersas Estuarinas (Master Dissertation, Universidade Federal do Rio Grande). 2021.

MISTURINI, DAIRANA; COLLING, L. A. Can short-term meteorological events alter subtropical estuarine macrobenthic assemblages in seagrass meadows (Patos Lagoon Estuary-Southern Brazil)?. Estuarine, Coastal and Shelf Science, p. 107532, 2021. DOI: https://doi.org/10.1016/j.ecss.2021.107532

DATA IMPORTANCE

- The dataset provides information about temporal variation in subtropical estuarine habitats;
- Integration of these data with other similar datasets can add to the comprehension of the effects of SAV on benthic macrofaunal diversity and abundance in subtropical estuarine areas;
- The data have information about different quali and quantitative variations generated by four occluded fronts, in different scenarios of intensity and habitat complexity, for macrozoobenthic organisms and canopy characteristics;
- The dataset offer insights on the influence of patchiness, composition, morphology of seagrass species and edge effect in the structure of macrozoobenthic assemblage.

MATERIALS AND METHODS

Study area

The Patos Lagoon is the largest coastal lagoon in South America with ~ 11,000 km². The estuarine area (~170 km²; hereafter PLE) comprising shallow flats (> 1.5 m depth) and a deeper main channel (CALLIARI; CUNHA; ANTIQUEIRA, 2010). Located between the latitudes 31° and 32°S, the Patos Lagoon estuary (PLE) (Fig. 1) is situated in a humid subtropical region, with the frequency of occluded fronts passages being variable between seasons (STECH; LORENZZETTI, 1992). The hydrodynamics and physicochemical characteristics of PLE are highly dependent of local and remote winds action, fluvial discharge (mainly by rivers Guaíba, Camaquã and São Gonçalo channel) and regional precipitation (MOLLER et al., 2001). The estuarine region is dominated by riverine discharges and becomes oligohaline in raining season (winter and spring). During Summer and Autumn, local hydrology is mainly controlled by NE and SW wind and eurihaline scenarios prevail (MOLLER et al., 2001).

Field sampling

This study is a short-term research demanded by the Brazilian Long-Term Ecological Research Program (BR-LTER) in the Patos Lagoon Estuary and adjacent marine coast (PLEA). The study was performed in the northern margin of the Justino Bay (Fig. 1, detail), a shallow estuarine area with local hydrodynamics and physical-chemical parameters strongly affects by southwestern winds. The sampled area was surrounded by salt marshes, sandflats and, similarly to other estuarine shoals (SEELIGER; ODEBRECHT, 2010), also presented seasonal variations in the SAV structure and abundance.

The field works were carried out hours or one day before and after four occluded fronts passage, using before as control, according to BACI model (Before/After, Control/Impact; UNDERWOOD, 1996). Sampling fieldwork were in Summer (B: 2019/03/08 and A: 2019/03/13), Autumn (B: 2019/05/08 and A: 2019/05/13), Winter (B: 2019/08/23 and A: 2019/08/28) and Spring (B: 2019/11/08 and A: 2019/11/18). Sampling followed a hierarchical model where submerged aquatic vegetation (SAV) Meadow, Sandflat and SAV Edge habitats were sorted. The sampled habitats were divided in transects (T1, T2, T3),

creating a 400 m^2 (20 m x 20 m) delimitated squares.

Figure 1. South America, Brazil and Rio Grande do Sul (top left), where the Patos Lagoon Estuary is located (PLE; top left) and the sampling area in the Justino Bay– SJ (shaded in black).

Biological Parameters

During each sampling event, SAV visual coverage and canopy height (quadrat, 1 m^2), and biomass (core: 0.1 m Ø X 0.1 m depth) were collected in each transect and habitat (N total = 216 samples). In the laboratory, plants fresh biomass was separated from macrobenthic organisms and sorted out in *R. maritima/ Z. palustris* and in *P.striatus* according to leaf morphology. Below (roots and rhizomes) and aboveground (shoots and leaves) biomass were separated for dry weight determination (48 h, 60 °C; MCKENZIE et al., 2003).

Benthic macrofauna were sampled using a cylindrical core (0.008 m²). The sedimentary package was removed from the core, placed in a tray and stratified in the 0.1 m surface sample and 0.1 m to 0.2 m bottom sample, with a spatula, for each transect and habitat (N total = 216 samples for each stratum). The samples were sieved through a 300 μ m mesh and kept fresh just to presort fauna and flora. In the laboratory, the samples were identified and classified to the

lowest possible taxonomic level based on morphological and anatomical characteristics, was fixed with 4 % formalin, identified and preserved in alcohol 70 %.

Environmental Parameters

Surface water temperature (mercury thermometer) and salinity (portable RH0-90 refractometer) were taken at the beginning of each field sampling. Sediment samplings were performed in duplicate for each transects and habitat with a cylindrical core (0.002 m², 0.1 m depth, total N=144) for granulometric analyses and determination of organic matter content. Granulometry was analyzed using the method described by Suguio (1973). Organic matter content was determined by the loss on ignition method (DAVIES, 1974).

Quality control

The sampled material was processed by specialists, based on accepted and applied

manuals for sampling (LANA et al., 2006; TURRA; DENADAI, 2015), taxonomy (RIOS, 1994: ARENZON, 1999; AMARAL; RIZZO; ARRUDA, 2006; BOND-BUCKUP; LARKUM; BUCKUP; ORTH; DUARTE, 2006) and methodology (SUGUIO, 1973; DAVIES, 1974; LAVERY; KENDRICK, 2001). Taxonomic validity was verified using the World Register Marine **Species** of (WoRMS; www.marinespecies.org) and in National Center Information for Biotechnology (https://www.ncbi.nlm.nih.gov).

DATA DESCRIPTION

This dataset contains environmental data, morphology and characteristics of SAV data, and benthic macrofauna quali and quantitative data. A total of 432 macrozoobenthic samples (216 samples for stratum); 216 samples for biomass, vegetal coverage, canopy height and marine macrophytes morphology; 144 samples by sedimentology and organic matter; 72 water column depth measurements; and 8 temperature and salinity measurements were seasonally collected. After meteorological events the data differed from the initial (i.e., Before treatments), in this way, we suggest the use of data before events for studies aiming to compare estuarine benthic communities structure and composition.

VAS showed a seasonal trend with higher values in Summer (EV1) and lowers in Winter (EV3). The presence of *R. maritima* was registered throughout the year and *P. striatus* only in Summer (EV1) and Spring (EV4). All vegetation data were expressed per meter or square meter.

Figure 2. Frequency of macrozoobenthic organisms classes in this dataset. "Other" refers to classes whose total density was less than 625 indv.m⁻².

Our equipment aimed capture benthic macrofauna and marine macrophytes, but we registered other SAV associated fauna occurrence. The associated fauna was constituted by abundant meiofauna, megafauna, limnic organisms, terrestrial insects, planktonic organisms, the complete taxonomic coverage are in Table 1. A total of 13.828 brackish water macrozoobenthic organisms, distributed across 20 taxa. A total 890 epifaunal organisms and 12.938 infaunal organisms were collected and the most frequent class were the Polychaeta (91 %) and Gastropoda (5 %; Fig 2). The number of organisms is expressed in density (m²).

Table 1. List of *taxa* found in the sampling area during 2019. Note that *taxa* were identified at distinct taxonomic levels. The first column represents the species identifiers numbers at the end of the occurrenceID code in dataset. Sp. ID: Specie Identification in occurrenceID; K: Kingdom; P: Phylum; C: Class; O: Order; F: Family; G: Genus; S: Specie.

Sp ID	к	Ρ	С	0	F	G	S		
3		nelida	Polychaeta	Phyllodocida	Nephtyidae	Nephtys	Nephtys fluviatilis		
4						Alitta	Alitta succinea		
1					Nereididae	Laeonereis	Laeonereis acuta		
16				Spionida	Spionidae	Paraprionospio	Paraprionospio pinnata		
14		Ar		Capitellida	Capitellidae	Capitella	, Capitella natoi		
2						Heteromastus	Heteromastus similis		
15			Oligochaeta	ligochaeta					
38			Insecta	Coleoptera					
11				Diptera	Chironomidae				
35				Hemiptera Cicadellidae					
39				Hemiptera					
25				Hymenoptera					
36				Odonata					
41				Cumacea	Diastylidae	Diastylis	Diastylis sympterygiae		
42				Decapoda	Portunidae	Callinectes			
9					Varunidae	Cyrtograpsus	Cyrtograpsus angulatus		
34		a	e		Penaeidae				
26	ia	spodo.	Malacostrac	Isopoda	Sphaeromatidae	Cassidinidea	Cassidinidea fluminensis		
18	nal	rthr			Munnidae	Uromunna	Uromunna peterseni		
7	Aniı	A		Mysidacea					
8				Amphipoda					
28				Tanaidacea	Kalliapseudidae	Monokalliapse udes	Monokalliapseudes Schubarti		
33					Tanaididae	Sinelobus	Sinelobus Stanfordi		
40			Arachnida	Trombidiformes					
17			L levre e combie	Sessilia Balanidae					
37			пеханацрна						
32			Entognatha						
20			Branchiopoda Diplostraca						
27			Ostracoda						
43		Chordata	Thaliacea	Salpida	Salpidae				
19		Cnidaria	Hydrozoa			-			
5			Bivalvia Bivalvia		Cochliopidae	Heleobia	Heleobia australis		
13		llusca		Littorinimorpha			Heleobia charruana		
6									
23		Mo							
22				Myida	Corbulidae	Erodona	Erodona mactroides		
21		Newsetsda		Cardiida	Solecurtidae	Tagelus	l'agelus plebelus		
31		Nematoda							
24		wernertea		[
29	Chromista	Foraminifera	Tubothalamea Miliolida						
30									
46	ant e	ach ohy a	agn ops a	sm les	Potamogetonaceae	Potamogeton	Potamogeton striatus		
44	Pla	Tra eop ti	Ma olic id	Ali: ata	Ruppiacea	Ruppia	Ruppia maritima		

Sp ID	к	Р	с	0	F	G	S
45					Zannichelliaceae	Zannichellia	Zannichellia palustris

Dataset

The dataset was formatted according to the Darwin Core standard (DwC) and organized in the OBIS-ENV-DATA model (DE POOTER et al., 2017). The file contain an event and location spreadsheet (Event core; Table 2), a species occurrence list spreadsheet (Occurrence extension) and a quantitative environmental parameters, benthic density and SAV biomass, coverage, morphology and canopy height data spreadsheet (ExtMoF). Darwin Core terms used for each field column is listed in Table 2. Environmental parameters were described with Natural Environment Research Council (NERC).

 Table 2. Dwc terms and their meanings according to the Darwin Core vocabulary.

Spreadsheet	Field	Definition		
	datasetName	Dataset unique identifier		
	institutionID	The name of institution having custody of the dataset.		
	institutionCode	The name of institution having custody of the dataset.		
	rightsHolder	An organization managing the data rights.		
	parentEventID	Identifier for Event that groups the Events.		
	eventID	A unique identifier constructed based on event information.		
	eventDate	The date of field work resented in the Year-Month format.		
	Locality	The locality in Patos Lagoon which sampling events occurred.		
	locationID	An identifier for locality and habitat which field work are made.		
	Country	The country in which sampling events occurred.		
	countryCode The standard code for country.			
Event core	stateProvince The state in which sampling events occurred.			
	waterBody	The name of the water body where sampling occurred.		
	Habitat	The habitat which sampling events occurred.		
	samplingProtocol	Type of sampler method, which defines the sampling protocol.		
	samplingEffort	The measure for effort that was expended during a sampling event.		
	sampleSizeValue	The size of the sample.		
	sampleSizeUnit	Sampler size transformation (0.008 m ²) to obtain organisms density.		
	geodeticDatum	Spatial reference system upon which the geographic coordinates.		
	decimalLatitude	The geographic latitude of sampling area.		
	decimalLongitude	The geographic longitude of the sampling area.		
	basisOfRecord	The origin of the data, such as museum or sample.		
	occurrenceID	A unique identifier providing information of biological occurrence.		
•	taxonRank	The most specific name in the scientific name field.		
Occurence	occurrenceStatus	A statement about the presence or absence of a Taxon.		
extension	scientificName	The full scientific name, with authorship and date		
	scientificNameID	Number identifier of organism		
	scientificNameAuthorship	scientificNameAuthorship The authorship information for the scientificName.		
	Kingdom	The kingdom in which the taxon is classified.		

Spreadsheet	Field	Definition
	Phylum	The phylum or division in which the taxon is classified.
	Class	The class in which the taxon is classified.
	Order	The order in which the taxon is classified.
	Family	The family in which the taxon is classified.
	Genus	The genus in which the taxon is classified.
	specificEpithet	The species in which the taxon is classified.
	collectionCode	The laboratory where the collection was deposited
	identifiedBy	Name of the author who identified the organisms.
	recordedBy	The responsible for recording the original Occurrence.
	bibliographicCitation	The bibliographic reference must be cited when the data is used.
	measurementID	Identifier related to the type of measurement performed.
	measurementType	The measurement name type according to NERC.
	measurementTypeID	The identifier for measurement type according to BODC.
	measurementValue	The value of the measurement.
ExtMoF	measurementvalueID	The measurement value ID.
	measurementUnit	The units related to measurement value according to NERC.
	measurementUnitID	A measurement unit according to the BODC
	measurementMethod	The method used to determine the measurement.
	Remarks	Reference or protocol used to obtain the measurements.

NERC: Natural Environment Research Council; BODC: British Oceanographic Data Center

The abbreviations created to identify place, occurrence and measurement in dataset, such as are in the diagram below (Fig. 3).

SUPPLEMENTARY MATERIALS

Repository: Global Biodiversity Information Facility (GBIF). | DOI: https://doi.org/10.15468/v2dd3g Links to access: https://www.gbif.org/dataset/04167aa4-4148-4691-a264-031922765fc1

ACKNOWLEDGEMENTS

The Brazilian Long-Term Ecological Research Program has been supported by MCTI (Ministério de Ciência, Tecnologia e Inovação) and the Brazilian governmental funding agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Process NUMBER: CNPq/CAPES/FAPs/BC – Fundo Newton/PELD nº 15/2016), CAPES (Coordenação de Aperfeiçoamento Pessoal de Nível Superior), FAPERGS (Fundação de Amparo à Pesquisa do Rio Grande do Sul), and the Newton Funding (British Council), the Organization for the Conservation of South American Aquatic Mammals. Additional support came from CNPq, which provided research fellowships to author D.M. V.M.L was financially supported by CAPES with a postdoctoral scholarship.

Figure 3. Schema with abbreviations to identify dataset IDs. Codes for strata (10, 20), replicates (a, b, c), transects (t1, t2, t3), habitats (sf, e, sm), periods before (B1, B2, B3, B4) and after (A1, A2, A3, A4) events (2019:3, 2019:5, 2019:8, 2019:11), sampled at Justino Bay (SJ), PLE (patos), BR, as part of the LTER-PLEA and deposited at Benthic Ecology Laboratory (benthos), Oceanographic Institute (IO), Federal University of Rio Grande (FURG). Highlight for the biotic, in green background (top), and abiotic data, in orange (bottom). The red asterisks mark each measurementID specification.

REFERENCES

AMARAL, A. C. Z.; RIZZO, A. E.; ARRUDA, E. P. Manual de identificação dos invertebrados marinhos da região sudeste-sul do Brasil. [s.l.] EdUSP, v. 1, 2006.

BUCKUP, L.; BOND-BUCKUP, G.; ARENZON, A. Os crustáceos do Rio Grande do Sul. Porto Alegre: Editora da Universidade, Universidade Federal do Rio Grande do Sul, 1999.

CALLIARI, L.; CUNHA, R. P. DA; ANTIQUEIRA, J. A. F. DE. Geomorfologia e Dinâmica Sedimentar. In: SEELIGER, U.; ODEBRECHT, C. (Eds.). O estuário da Lagoa dos Patos: um século de transformações. 1. ed. Rio Grande: FURG, p. 31–43. 2010.

DAVIES, B. E. Loss-on-ignition as an estimate of soil organic matter. Soil Science Society of America Journal, v. 38, n. 1, p. 150–151, jan. 1974.

DE POOTER, D. et al. Toward a new data standard for combined marine biological and environmental datasets - Expanding OBIS beyond species occurrences. Biodiversity Data Journal, v. 5, n. 1, 2017.

LANA, P. DA C. et al. Avaliação ambiental de estuários brasileiros: diretrizes metodológicas. serie livr ed. Rio de JAneiro: Museu Nacional, 2006.

LARKUM, A. W. D.; ORTH, R. J.; DUARTE, C. Seagrasses: Biology, Ecologyand Conservation. 1. ed. Dordrecht: Springer Netherlands, 2006.

LAVERY, P.; KENDRICK, G. Assessing biomass, assemblage structure and productivity of algal epiphytes on seagrasses. 2001.

MCKENZIE, L. J.; CAMPBELL, S. J.; RODER, C. A. Seagrass-Watch: manual for mapping & monitoring seagrass resources by community (citizen) volunteers. 2. ed. Quensland: Seagrass-Watch: Manual for Mapping & Monitoring Seagrass Resources by Community (citizen) volunteers, 2003.

MOLLER, O. O. et al. The influence of local and non-local forcing effects on the subtidal circulation of Patos Lagoon. Estuaries, v. 24, n. 2, p. 297, 2001. DOI: https://doi.org/10.2307/1352953.

RIOS, E. C. Seashells of Brazil. 2. ed. Rio Grande: Fundação Cidade do Rio Grande, Fundação Universidade do Rio Grande, Museu Oceanográfico, 1994.

SEELIGER, U.; ODEBRECHT, C. O Estuário da Lagoa dos Patos: um século de transformações. 1. ed. Rio Grande: Universidade Federal do Rio Grande - FURG, 2010.

STECH, J. L.; LORENZZETTI, J. A. The Response of the South of Wintertime Brazil Bight to the Passage Cold Fronts. Journal Of Geophysical Research, v. 97, n. 6, p. 9507–9520, 1992. DOI: https://doi.org/10.1029/92JC00486.

SUGUIO, K. Introdução à sedimentologia. São Paulo: E. Blücher, 1973.

TURRA, A.; DENADAI, M. R. Protocolos para o monitoramento de habitats bentônicos costeiros - Rede de Monitoramento de Habitat Bentônicos Costeiros - ReBentos. [s.l.] Instituto Oceanográfico da Universidade de São Paulo, 2015.

UNDERWOOD, A. J. On Beyond Baci. In: SCHMITT, R. J.; OSENBERG, C. W. B. T.-D. E. I. (Eds.). Detecting Ecological Impacts. San Diego: Elsevier, 1996. p. 151–175.