

Latin American Data in Science, v.2, n.1 datainscience.com.br ISSN: 2763-9290

A dataset of Oceanographic and biogeochemical anomalies in the Caribbean Sea.

Recebido: 27/04/2022 | Aceito: 23/06/2022 | Publicado: 21/07/2022 https://doi.org/10.53805/lads.v2i1.50

Reinaldo Casals¹, Humberto L. Varona^{*2,3}, Amilcar E. Calzada¹, Carlos A. D. Lentini⁴, Carlos Noriega^{2,3,5}, Dayanis M. Borges⁶, Simone M. A. Lira^{7,8}, Claudeilton S. de Santana⁷, Moacyr Araujo^{2,3,5}, Ralf Schwamborn⁷, Alejandro Rodriguez¹

ABSTRACT

This article describes six ocean datasets consistent in anomalies of biogeochemical, physical, sea wave, biological, oceanic and chemical parameters (DACS-BGC, DACS-PHY, DACS-WAVE, DACS-BIO, DACS-OCE and DACS-CHEM) in several time scales from 3-hourly to monthly frequencies, either on the sea surface, downward/upward fluxes between the ocean and the atmosphere and the water column in the Caribbean basin (Gulf of Mexico, Caribbean Sea and Atlantic Ocean) in a geographical domain from latitudes 8 degrees to 35 degrees North and from longitudes 45 degrees to 100 degrees West, obtained, from several satellites, modeling services and observational programs. The datasets were created in NetCDF format conserving their original horizontal resolutions of 1.0, 0.5, 0.26, 0.08333 and 0.04 degrees in gridded structure; only the WAVEWATCH3 dataset has a non-uniform step in latitude and longitude. This internal data structure facilitates its handling due to a wide diversity of existent freeware tools, and it is mainly intended to support researchers to understand the evolution and cycles of physical, biogeochemical, chemical, sea wave, oceanic and biological parameters linked to global climate change.

Keywords: Anomaly databases; Physical parameters; Biogeochemical parameters; Surface forcing.

DATA IMPORTANCE

- This dataset is useful for oceanographers, meteorologists, marine biologists, marine chemists and ecologists for studying the behavior and seasonal variability of physical and biogeochemical parameters in the Caribbean Sea and adjacent seas.
- These data are stored in NetCDF format, which greatly facilitates their use, since they do not require any prior processing.
- Some data sets have a very high resolution, so they can be used to perform some local analysis on their monthly variability.

¹ Marine Meteorology Center (CMM). National Institute of Meteorology (INSMET), Havana, Cuba.

² Estuarine and Coastal Physical Oceanography Laboratory (LOFEC), Oceanography Department (DOCEAN), Federal University of Pernambuco, Recife, PE, Brazil. humberto.varona@ufpe.br.

³ Center for Risk Analysis, Reliability Engineering and Environmental Modeling (CEERMA). Federal University of Pernambuco. Recife-PE. Brazil.

⁴ Earth and Environment Physics Department. Federal University of Bahia. Salvador, Bahia, Brazil.

⁵ Brazilian Research network on Global Climate Change (Rede CLIMA), São José dos Campos, SP, Brazil.

⁶ Ocean and Atmosphere Studies Laboratory (LOA). National Institute for Space Research (INPE). São José dos Campos - SP. Brazil.

⁷ Laboratory of Zooplankton, Department of Oceanography, DOCEAN, Federal University of Pernambuco, Recife, PE, Brazil.

⁸ Laboratory of Plankton Ecology, Department of Biology, Federal Rural University of Pernambuco, Recife, PE, Brazil.

MATERIALS AND METHODS

Anomaly datasets at the Caribbean Sea (including the Gulf of Mexico and the nearby Atlantic Ocean) compiled were from biogeochemical, physical, oceanic, sea wave, biological and chemical global datasets originated in several research centers, space missions, and ocean observation campaigns, which have been stored at the Department of Oceanography of the Federal University of Pernambuco, Recife, Brazil and organized with the assistance of the Marine Center in Meteorology the Institute of Meteorology of Cuba.

The dataset is unrestrictedly available to the public in the following services:

- The Mercator Ocean International Database, which groups a wide variety of biological, geological, and chemical data organized in self-descriptive files (NetCDF format);
- The MODIS chlor-a (Moderate Resolution Imaging Spectroradiometer) sensor based on the NASA Aqua satellite (MODIS-Aqua), which is used for detecting chlorophyll-a concentrations for ocean color;
- The Global Precipitation Climatology Project (GPCP) was established by the World Climate Research Program (WCRP) for quantifying the distribution of annual precipitation around the world;
- The MODIS Aqua and Terra Global Level 3 Mapped Thermal and Mid-IR SST products of sea surface temperature (SST) data, also derived from the NASA MODIS sensor on board of Aqua and Terra satellites;
- The NCEP/NCAR Reanalysis 1 project as an analysis/forecast system to perform data assimilation using past data from 1948 to the present, which is available from Physical Sciences Division (PSD) at NOAA in its original four times daily format and as daily averages;
- The WHOI (Woods Hole Oceanographic Institute) Objectively Analyzed Air-Sea Fluxes (OAFlux_V3) provided as daily 1° gridded

global data of surface latent and sensible heat fluxes;

- The SMOS (Soil Moisture and Ocean Salinity) Mission managed by ESA through its Living Planet Program, in cooperation with CNES (France) and CDTI (Center for Technological and Industrial Development) in Madrid, Spain. This mission is dedicated to demonstrate the SSS observations (Sea Surface Salinity) over oceans and SM (Soil Moisture) over land to advance climatological, meteorological, hydrological and oceanographic applications;
- The SODA (Simple Ocean Data Assimilation) reanalysis model for ocean and sea ice, dedicated to reconstruct the historical physical (and eventually biogeochemical) history of the ocean since the beginning of the 20th century;
- The ocean wave model WAVEWATCH3 in its global version (multi_1.glo) run at NCEP (National Centers for Environmental Predictions) with a spatial resolution of 0.5 degrees;
- GLOBAL_MULTIYEAR_WAV_001_032, а product which was created by Mercator Ocean International (MOI) in 2019 and is available at Copernicus Marine Service website. This dataset is also known as WAVERYS, and has a temporal coverage from 1993-01-01 to present with spatial resolution of 0.2°. WAVERYS is based on the third generation Meteo France WAve Model (MFWAM) which takes into account SWH assimilated data from historical altimetry missions of ERS1, TOPEX/POSEIDON, ERS2, GFO, Jason-2 and 3, Envisat, Saral, Cryosat-2 and Sentinel-3A; Sentinel-3 and Sentinel-1-SAR spectra. Directional wave spectra were assimilated from Sentinel-1A and 1B Synthetic Aperture Radar (SAR) missions from 2017 onwards. The dataset is evaluated against the wave records of the HY-2B satellite. WAVERYS includes tri-hourly instantaneous fields of integrated wave parameters from the total

spectrum (significant height, period, direction and Stokes drift), as well as the following partitions: the wind wave, the primary and secondary swell waves (MOI, 2019b; LAW-CHUNE et al., 2021);

 Other multi-frequency anomaly files of biogeochemical parameters in the Caribbean Sea, calculated from the datasets MULTIOBS_GLO_BIO_BGC_3D_REP_015_010
 , GLOBAL_MULTIYEAR_BGC_001_033, MULTIOBS_GLO_BIO_CARBON_SURFACE_RE
 P_015_008, and OCEANCOLOUR_GLO_CHL_
 L4_REP_OBSERVATIONS_009_082, also distributed by the Mercator Ocean International Database.

This information was compiled within the geographical dominium limited between the parallels 8 to 35°N and the meridians 45 to 100°W (Fig. 1), which may serve to perform a time series analysis for any point of interest. Figure 1 shows three red points located in the study region, in which the anomalies will be shown as an example of an analysis of the variability of some parameters (Fig. 2). Table 1 shows the geographical location of the points and their corresponding acronyms.

Table 1.- Geographical location of test points for time series analysis (see red points at Figure 1).

Point name	Acronym	Analyzed parameter	Geographical location
Yucatan Canal Point	YCP	Sea surface salinity	85.11°W, 22.81°N
Mississippi River Mouth Point	MRMP	Total chlorophyll-a mass concentration	89.02°W, 30.11°N
North Guantanamo Point	NGP	total significant wave height of wind waves and swells	74.32°W, 21.29°N

The anomalies of all the 38 physical and 16 biogeochemical parameters within these datasets were calculated and reduced to the abovementioned limits. All the obtained files are in standard NetCDF format. The time reference of these datasets is marked on January 1 at 00:00:00, however, the beginning years have been 0001, 1901, 1950, 1970, or 1980. With respect to cell values, flags **missing_value** and **_Fillvalue** are represented in the metadata of each parameter by the NaN symbol (Not a Number) or numbers out of range, for example, 9999 and 9.96921e+36.

Figure 2.- Examples of anomalies time series analysis of A) Sea surface salinity (psu) at YCP, B) Total concentration of chlorophyll-a (mg/m-3) at MRMP obtained from MODIS-Aqua, and C) Significant wave height (m) at NGP.

All files were created with the Matlab® script set **mNC**, created by Varona (2021a) who considered maintaining the original global data resolution to construct the intra American seas domain with these Matlab® function griddata. Then, using the Matlab® script set CalcPlotAnomaly (VARONA, 2021b) data anomaly sets were calculated. Both sets of functions have also been used by Varona et al. (2022a,b).

The freeware programs **ncview** (visual browser for NetCDF, PIERCE, 2016), **ncdump** (Unidata's Utility for viewing the NetCDF file structure), **nco** (NetCDF operators, ZENDER, 2008), and **CDO** (Climate Data Operator, SCHULZWEIDA, 2006) were used for pre-and post-processing (metadata creation) of all datasets.

An example of a time series analysis is shown in Figure 2, which illustrates the behavior of anomalies for sea surface salinity at Yucatan Canal point (YCP), total chlorophyll-a mass concentration at Mississippi river mouth point (MRMP), and total significant wave height (wind waves and swells) in the North Guantanamo province (NGP).

The annual regime of sea surface salinity in the Yucatan canal shows maximal anomalies of about 0.5 psu from 2010 to 2014, and from this year on, a general trend toward increasing and maximal values over 0.5 psu can be noted; meanwhile, the behavior of total chlorophyll anomalies at the Mississippi river mouth shows a high variability between 2007 to 2016 with high peaks (more than 5 mg m⁻³) followed by sharp drops. This high variability has been related to the annual and interannual Mississippi outflow changes, as the river plume, that is rich in nutrients and particulate components (e.g., SPM, POC, and particulate C/N), modulates the chlorophyll concentration in this area (GILBERT; LEE;

PODESTA, 1996; WYSOCKI et al. 2006; NABABAN et al., 2011).

On the other hand, the significant wave height shows a normal behavior of the anomaly, only altered by cold fronts and tropical cyclone impacts. In this case, wave height anomalies of 3.0 meters or more can be accounted for by a cold front in March 2000, in September 2008 by Hurricane Ike, in August 2012 by Tropical Storm Isaac, in October 2015 by Hurricane Joaquin, in October 2016 by Hurricane Matthew, and in September 2017 by Hurricane Irma.

DATA DESCRIPTION

Data are grouped in six datasets: **Biogeochemical Parameter Anomalies Database in** the Caribbean Sea (DACS-BGC), Physical Parameter Anomalies Database in the Caribbean Sea (DACS-PHY), Chemical Parameters Anomalies in the Caribbean Sea (DACS-CHEM), Biological Parameters Anomalies in the Caribbean Sea (DACS-BIO), Ocean Parameters Anomalies in the Caribbean Sea (DACS-OCE) and Wave Parameters Anomalies in the Caribbean Sea (DACS-WAVE).

The database of biogeochemical parameters was calculated from CO2 flux, GLOBAL_REANALYSIS_BIO_001_029 and MODIS Aqua chlor-a original datasets; database of physical parameters was derived from GPCP, MERRA2, MODIS Aqua/Terra level 3 Thermal, NCEP2, OAFLUX, SMOS, SODA; WAVEWATCH3 respective datasets; chemical parameters datasets were obtained from originals MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_01 5 008 and MULTIOBS GLO BIO BGC 3D REP 015 010.

Other wave parameters were obtained from GLOBAL_MULTIYEAR_WAVE_001_032 (WAVERYS), while other biological, chemical and

ocean parameters also could be obtained from MULTIOBS_GLO_BIO_BGC_3D_REP_015_010, as well as from GLOBAL_MULTIYEAR_BGC_001_033 and OCEANCOLOUR_GLO_CHL_L4_REP_ OBSERVATIONS_009_082. Anomaly datasets presented here consist of 54 files of averaged data in NetCDF format, whose temporal resolution may be monthly, weekly, daily, every four days, six, or three-hourly, depending on the respective numeric model features (Table 2, in the appendices). Figures 3 and 4 show the file structure within databases.

Dataset

The structure shown in Figure 3 consists of three datasets of physical parameters that characterizes the horizontal flux intensities and directions either in the atmosphere and the ocean, vertical flux intensity between air and atmosphere, and horizontal distribution of temperature and sea surface salinity (SSS). Dataset of physical parameters are grouped in eight directories that include atmospheric and wave model outputs; the dataset of ocean parameters consists of six directories that groups result of several campaigns of satellite observations of winds, marine currents, sea surface temperature (SST), and other horizontal fluxes that have contributed to a data assimilation system, and wave dataset, whose source has been the Copernicus' Marine Service from Mercator Ocean International Database.

It is important to note that every dataset, except SMOS, is more than 20 years long; moreover, the original spatial resolution of multi1.glo of WAVEWATCH3 GRIB-2 format was converted from 0.5-degree to 1.25×1.0 degree, to make it consistent with historical output from the model.

By the other hand, Figure 4 shows three datasets for biogeochemical (four directories), biological (four) and chemical (three) parameters, which characterizes the ocean water quality through chlorophyll-a and particulate carbon mass concentration, dissolved oxygen and carbon dioxide, acidity and presence of phyto and zooplankton, among others. These outputs were originated also at the Copernicus' Marine Service, which offers its results for the sea surface and for several depth levels.

Figure 3.- Organizational structure of the file distribution of physical parameters according to datasets.

Figure 4.- Organizational structure of the file distribution of biogeochemical parameters according to datasets.

The NetCDF files are self-descriptive, so by reading the metadata in the structure of each file you can know the names of the parameters, their description, unit of measurement, as well as the time offset value, and the missing data value. Table 3 (in the appendices) shows parameters name, description, measure unit of each parameter, and corresponding dataset; however, some pairs of parameters are repeated in two different source datasets (see Table 4, in the appendices). Differences are given because of data spatial resolution, so the user should select the parameter according to its research outreach.

The DACS-PHY dataset covers 16 atmospheric and oceanic parameters in the Caribbean Sea, which are related to the exchange of energy and air mass between the atmosphere and the ocean. These parameters are the result of numerical model runs and satellite-based observation missions, resulting in long time series of more than 20 years, except for sea surface salinity (unbiased) by SMOS, whose time series is only 10 years long. The DACS-OCE dataset groups 13 ocean parameters in the Caribbean Sea, obtained from oceanic model runs, except ASCAT files that have been produced from satellite observations for showing gridded wind decomposed data. The results of these models also include results at the surface and various depth levels. In general, all the time series are more than 25 years long, with the files obtained from the DASK dataset being the longest since they started in 1947. Another important aspect is the large volume of information stored in anom_mmECCO-FLUX-CA.nc, consisting of 27 ocean variables, which characterize a wide variety of ocean fluxes in both vertical and horizontal directions.

The DACS-BIO dataset encompasses 19 redundant biological parameters to facilitate comparative studies of anomalies, according to different data sources for the Caribbean Sea and close areas (Fig. 1; Table 3, in the appendices). These parameters are distributed among different groups of pelagic organisms, mainly planktonic communities, for example, Phytoplankton, and

Zooplankton from different sizes, groups, or depths. All biological parameters are represented by unit Mass (Biomass) in g m⁻², mg m⁻³, or mg m⁻².

Phytoplankton are fundamental communities in the functioning of marine ecosystems that play a key role in the global carbon cycle, contributing to more than half of Earth's primary productivity. Alterations in phytoplankton community structure, resulting from the uniquely environmental sensitivities of these groups, can significantly change elemental cycling from locally to more global landscapes (LITCHMAN et al., 2015; FARIAS et al., 2022). Primary production plays a bottom-up control on marine ecosystems due to its key role in food webs, remineralization of organic particles, and climate control through CO₂ sequestration and cycling through the marine CO₂ pump (PAULY; CHRISTENSEN, 1995; LIU et al., 2021; SHIH et al., 2021), this production is limited by other parameters such as light, nutrient availability and suspended material in the water column such as POC, DOC, sediments, etc. Understanding the parameters involved in the primary productivity process is essential for understanding the ecology and ecosystem structure of the marine environment (TILSTONE et al., 2015; SHIH et al., 2021, ZHOU et al., 2020) These parameters on the DACS-BIO dataset are described as different groups of phytoplankton (NANO, PICO, PROKAR, DINO, DIATO, HAPTO, MICRO, and PROCHLO in Table 3, in the appendices), green algae (GREEN in Table 3, in the appendices) expressed as mg m⁻³ and Net primary productivity of biomass expressed as carbon in seawater (mg m⁻²).

Particulate Organic Matter or POC is the organic matter resulting from primary production (as dead cells), organic detritus (partially decomposed), plant residues, organisms' carcasses, and other materials. Fluxes of POC transport carbon and other elements from the epipelagic zone to deeper waters, where photosynthesis does not happen (LEE; WAKEHAM; ARNOSTI, 2004). During the sinking, physical, chemical, and biological processes act on dissolution, fragmentation, solubilization, and remineralization (STEMMANN; BOSS, 2012). Despite the loss, POC is still one of the main components of surface vertical energy flux to the sea bottom. This parameter in the DACS-BIO dataset is described as the Mass concentration of particulate organic matter expressed as carbon in seawater as poc (Table 3, in the appendices).

The Epipelagic Micronekton is a community represented by small pelagic fishes, crustaceans, and other invertebrate organisms. The importance of small pelagic fishes and crustaceans in transferring energy to top predators is wellrecognized in marine ecosystems (PEREYRA; PEARCY; CARVEY, 1969; EDUARDO et al., 2021). For this reason, mnkc data (Table 3, in the appendices) expressed as wet weight in seawater may offer information about the first mass water epipelagic micronekton (mnkc epi) or the subsurface mass water (200-1000 m) with information for different groups of mesopelagic micronekton (mnkc_hmlmeso, mnkc_lmeso, mnkc_umeso, mnkc_mumeso, mnkc_mlmeso (Table 3, in the appendices).

The Zooplankton community is represented by (meroplankton) or larvae holoplanktonic organisms in pelagic ecosystems. The community is represented by several larvae of animals like fishes, crustaceans, and other invertebrate organisms (LIRA et al., 2017; NEUMANN-LEITÃO et al., 2018; de SANTANA et al., 2020; MELO et al., 2020). The zooplankton plays a trophic link between the phytoplankton and large animal groups. In this way, zooplankton is an important parameter to understand the energy transfer in marine ecosystems. Zooplankton biomass in the DACS-BIO dataset is expressed as carbon (g m⁻², Table 3, in the appendices).

The DACS-BGC dataset includes 12 biogeochemical parameters to assist in comparative studies of anomalies in the Caribbean Sea region and adjacent areas (see Figure 1 and Table 3, in the appendices). This dataset includes parameters associated with the carbonate system (CO₂ fluxes and CO₂ partial pressure), pH, primary productivity, Chlorophyll, dissolved oxygen, phytoplankton, total primary production, and dissolved inorganic nutrients (nitrate, phosphate, silicate, iron). These parameters play a fundamental role in the global carbon cycle in the aquatic environment. Changes in the parameters of the carbonate system, primary productivity, and/or nutrients are indicative of changes in the balance of liquid metabolism in an ecosystem (productivity – respiration).

The DACS-CHEM dataset includes 5 chemical parameters linked to the organic matter and/or carbon cycle (POM, chlorophyll, pH, carbon dioxide flux, and partial pressure of CO₂ in water). As mentioned above, these parameters are key in comparative studies of anomalies related to changes in the balance between primary production and respiration in the aquatic system.

The DACS-WAVE is an anomaly dataset composed of 6 wave parameters in the Caribbean Sea with a temporal coverage from 1993-01-01 to 2020-12-31, the available wave parameters are significant wave height, peak wave period, swell height, swell period, wind wave height, and wind wave period. This product is the result of the computation of ocean wave parameter anomalies with tri-hourly, daily, and monthly frequencies from the WAVERYS model with a spatial resolution of 0.2°. Other existing sources were used to obtain the DACS-WAVE dataset, such as model output data, analysis, reanalysis, and satellite observed data, as well as the dataset with combined data sources.

The general information in these anomaly datasets refers to the behavior of physical and biogeochemical variables in the surface and deep ocean and in the top two meters of the atmosphere, while the specific information in these data emphasizes, for example, on the various organisms (from planktonic to benthic) that make up the food web in the ocean, the oceanic fluxes at various depth levels, the hydrological characteristics of the mixed ocean layer in terms of temperature, salinity, and density, the variations in the carbon content in the ocean and its exchange with the atmosphere, among other variables. However, among these general and specific datasets, some datasets share similar variables, which can be seen in Table 4 (in the appendices). This study produced a novel and unique dataset for the Caribbean Sea. It will be the basis for new suites of synoptic analyses and models for this key region.

SUPPLEMENTARY MATERIALS

Data have been deposited in recognized open repositories. Title: Database of Anomalies in the Caribbean Sea (biogeochemical parameters): DACS-BGC. Repository name: 4TU.ResearchData DOI of the dataset: https://doi.org/10.4121/19093832.v1 Link to access the data: https://data.4tu.nl/articles/dataset/Database_of_Anomalies_in_the_Caribbean_Sea_biogeochemical_pa rameters_DACS-BGC/19093832 Publication date: 2022-02-01

Title: Database of Anomalies in the Caribbean Sea (physical parameters): DACS-PHY. Repository name: Science Data Bank DOI of the dataset: https://www.doi.org/10.11922/sciencedb.01489 Link to access the data: https://www.scidb.cn/en/detail?dataSetId=ffbb77f735c64573a11bb25ee6381226 Publication date: 2022-02-13

Title: Database of Anomalies in the Caribbean Sea (ocean wave parameters): DACS-WAVE. Repository name: SEANOE DOI of the dataset: https://doi.org/10.17882/86637 Link to access the data: https://www.seanoe.org/data/00754/86637/ Publication date: 2022-03-07

Title: Database of Anomalies in the Caribbean Sea (ocean parameters): DACS-OCE. Repository name: Science Data Bank DOI of the dataset: https://www.doi.org/10.11922/sciencedb.01580 Link to access the data: https://www.scidb.cn/en/detail?dataSetId=437086c0913745ad97076a0af58e938f Publication date: 2022-03-14

Title: Database of Anomalies in the Caribbean Sea (geochemical parameters): DACS-CHEM. Repository name: SEANOE DOI of the dataset: https://doi.org/10.17882/86636 Link to access the data: https://www.seanoe.org/data/00754/86636/ Publication date: 2022-02-23

Title: Database of Anomalies in the Caribbean Sea (biological parameters): DACS-BIO. Repository name: Science Data Bank DOI of the dataset: https://www.doi.org/10.11922/sciencedb.01578 Link to access the data: https://www.scidb.cn/en/detail?dataSetId=58c6175e20c54c66b84805421a2642fb Publication date: 2022-03-20

ACKNOWLEDGEMENTS

HLV, SMAL and RS acknowledges the TRIATLAS project, which has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement no. 817578. CADL acknowledges the AtlantECO project. The results of this work are a contribution to AtlantECO, which has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement no. 862923. CN and MA acknowledges the support of the Brazilian Research Network on Global Climate Change-Rede CLIMA (FINEP grants 01.13.0353-00). This work is a contribution to the Projects INCT AmbTropic–Brazilian National Institute of Science and Technology for Tropical Marine Environments (grants 565054/2010-4, 625 8936/2011, and 465634/2014-1, CNPq/FAPESB/CAPES). All authors acknowledge to the International Joint Laboratory TAPIOCA (IRD-UFPE-UFRPE).

REFERENCES

ADLER, R.F. et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). Journal of Hydrometeorology, American Meteorological Society. 4, 6, 1147–1167, 2003. DOI: https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2

BEHRINGER, D. W. 3.3 The Global Ocean Data Assimilation System (GODAS) at NCEP. Proceedings of the 11th symposium on integrated observing and assimilation systems for the atmosphere, oceans, and land surface, 2007. Available online at https://ams.confex.com/ams/pdfpapers/119541.pdf>. Accessed January 17, 2022

BENTAMY, A.; FILLON, D. C. Gridded surface wind fields from Metop/ASCAT measurements. International Journal of Remote Sensing. Vol. 33, Issue 6, pp. 1729–1754, 2011. Informa UK Limited. DOI: https://doi.org/10.1080/01431161.2011.600348

BROWN, O. B.; MINNETT P. J. MODIS Infrared Sea Surface Temperature Algorithm Theoretical Basis Document, Ver 2.0. 1999. Available at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod25.pdf>. Accessed in 2021-12-12.

CARTON, J. A.; GIESE, B. S. A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Monthly Weather Review, American Meteorological Society. 136, 8, 2999–3017, 2008. DOI: https://doi.org/10.1175/2007mwr1978.1

CHAU, T. T.; GEHLEN, M.; CHEVALLIER, F. Global Ocean Surface Carbon Product MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008. EU Copernicus Marine Service Information. Issue 3.0., 15 pp, 2020. Available online at https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-MOB-PUM-015-008.pdf>. Accessed January 7, 2022

DE SANTANA, C. S. et al. Amazon river plume influence on planktonic decapods in the tropical Atlantic. Journal of Marine Systems. 212, 103428, pp 1-14, 2020. DOI: https://doi.org/10.1016/j.jmarsys.2020.103428

EDUARDO L. N. et al. Distribution, vertical migration, and trophic ecology of lanternfishes (Myctophidae) in the Southwestern Tropical Atlantic. Progress in Oceanography. 199, 102695, 2021. ISSN 0079-6611. DOI: https://doi.org/10.1016/j.pocean.2021.102695

FARIAS G.B. et al. Uncoupled changes in phytoplankton biomass and size structure in the western tropical Atlantic. Journal of Marine Systems. 227, 103696, 2022. DOI: https://doi.org/10.1016/j.jmarsys.2021.103696

FORGET, G. et al. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development. Vol. 8, Issue 10, pp. 3071–3104, 2015. Copernicus GmbH. DOI: https://doi.org/10.5194/gmd-8-3071-2015

GELARO, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). In Journal of Climate. Vol. 30, Issue 14, pp. 5419–5454, 2017. American Meteorological Society. DOI: https://doi.org/10.1175/jcli-d-16-0758.1

GILBERT, P. S.; LEE, T. N.; PODESTA, G. P. Transport of anomalous low-salinity waters from the Mississippi River flood of 1993 to the Straits of Florida. Continental Shelf Research. 16, 8, 1065-1085, 1996. DOI: https://doi.org/10.1016/0278-4343(95)00056-9

KALNAY, E. et al. The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society. 77, 437-472, 1996. DOI: https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

KERR, Y. H. et al. Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience and Remote Sensing. 39, 8, 1729-1735, 2001. DOI: https://doi.org/10.1109/36.942551

KIM, Y. H.; HWANG, C.; CHOI, B. J. An assessment of ocean climate reanalysis by the data assimilation system of KIOST from 1947 to 2012. Ocean Modelling. Vol. 91, pp. 1–22, 2015. Elsevier BV. https://doi.org/10.1016/j.ocemod.2015.02.006

LAW-CHUNE, S. et al. WAVERYS: a CMEMS global wave reanalysis during the altimetry period. Ocean Dynamics. Vol. 71, Issue 3, pp. 357–378, 2021. Springer Science and Business Media LLC. DOI: https://doi.org/10.1007/s10236-020-01433-w

LEE, C.; WAKEHAM, S.; ARNOSTI, C. Particulate organic matter in the sea: the composition conundrum. Ambio, 33, 8, 565-575, 2004. DOI: https://doi.org/jstor.org/stable/4315547

LIRA, S.M. et al. New records of the larval forms *Cerataspis monstrosa* and *Amphionides reynaudii* (Crustacea: Decapoda) from the western tropical Atlantic. Zootaxa, 4237, 2, zootaxa-4237, 2017. DOI: https://doi.org/10.11646/zootaxa.4237.2.7

LITCHMAN, E. et al. Global biogeochemical impacts of phytoplankton: a trait-based perspective. Journal of Ecology. 103 (6), 1384–1396, 2015. DOI: https://doi.org/10.1111/1365-2745.12438

LIU, L. et al. Stereo observation and inversion of the key parameters of global carbon cycle: project overview and mid-term progressess. Remote Sens. Technol. Appl. 36, 11–24, 2021. DOI: https://doi.org10.11873/j.issn.1004-0323.2021.1.0011

MELO, D. C. M, et al. Genetic diversity and connectivity of Flaccisagitta enflata (Chaetognatha: Sagittidae) in the tropical Atlantic ocean (northeastern Brazil). PLoS ONE. 15, 5, e0231574, 2020. DOI: https://doi.org//10.1371/journal.pone.0231574

MERCATOR OCEAN INTERNATIONAL (MOI). Global Ocean Chlorophyll, PP and PFT (Copernicus-GlobColour) from Satellite Observations: Monthly and Daily Interpolated (Reprocessed from 1997) [Data set]. Mercator Ocean International. 2016. DOI: https://doi.org/10.48670/MOI-00100

MERCATOR OCEAN INTERNATIONAL (MOI) DATABASE. Global ocean biogeochemistry hindcast [Data set]. Mercator Ocean International. 2018. DOI: https://doi.org/10.48670/MOI-00019

MERCATOR OCEAN INTERNATIONAL (MOI) DATABASE. Global Ocean Surface Carbon [Data set]. Mercator Ocean International. 2019a. DOI: https://doi.org/10.48670/MOI-00047

MERCATOR OCEAN INTERNATIONAL (MOI). Global Ocean Waves Reanalysis WAVERYS [Data set]. Mercator Ocean International. 2019b. DOI: https://doi.org/10.48670/MOI-00022

MERCATOR OCEAN INTERNATIONAL (MOI) DATABASE. Global Ocean 3D Chlorophyll-a concentration, Particulate Backscattering coefficient and Particulate Organic Carbon [Data set]. Mercator Ocean International. 2020. DOI: https://doi.org/10.48670/MOI-00046

MERCATOR OCEAN INTERNATIONAL (MOI). Global ocean low and mid trophic levels biomass content hindcast [Data set]. Mercator Ocean International. 2021. DOI: https://doi.org/10.48670/MOI-00020

NABABAN, B. et al. Chlorophyll variability in the northeastern Gulf of Mexico. International Journal of Remote Sensing. 32, 23, 8373-8391, 2011. DOI: https://doi.org/10.1080/01431161.2010.542192

NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. MODIS-Aqua Ocean Color Data, NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group, 2014. DOI: https://doi.org/10.5067/AQUA/MODIS_OC.2014.0

NEUMANN-LEITÃO, S. et al. Zooplankton from a reef system under the influence of the Amazon River plume. Frontiers in *Microbiology*. 9, 355, 2018. DOI: https://doi.org/10.3389/fmicb.2018.00355

PAULY, D.; CHRISTENSEN, V. Primary production required to sustain global fisheries. Nature. 374, 255–257, 1995. DOI: https://doi.org/10.1038/374255a0

PEREYRA, W. T.; PEARCY, W. G.; CARVEY, F. E. Jr. Sebastodes flavidus, a shelf rockfish feeding on mesopelagic fauna, with consideration of the ecological implications. Journal Fishiries Res. Board Can. 26, 2211–2215, 1969. DOI: http://doi.org/10.1139/f69-205

PERRUCHE, C. Product User Manual for the Global Ocean Biogeochemistry Hindcast. GLOBAL_REANALYSIS_BIO_001_029. 1.1, 1-17, 2018. Available Issue pp online at <https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-029.pdf>. Accessed January 30, 2022.

PIERCE, D. W. Ncview: A NetCDF visual browser Scripps Institution of Oceanography. 2016. Available at http://meteora.ucsd.edu/pierce/ncview_home_page.html. Accessed in 2021-07-01.

SAUZEDE, R., RENOSH, P. R., CLAUSTRE, H. Product User Manual or Global Ocean 3D Particulate Organic Carbon and Chlorophyll-a concentration Product MULTIOBS_GLO_BIO_BGC_3D_REP_015_010. Issue 3.0, 2021. Available online at https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-MOB-PUM-015-010.pdf>. Accessed February 1, 2022

SCHULZWEIDA, U. CDO user's guide. Hamburg: Climate data operators, version 1.0.1, 2006. Max-Planck-InstituteforMeteorology.Availableat<https://src.fedoraproject.org/lookaside/pkgs/cdo/cdo.pdf/90a93037089dddf6f8919b9d6c30bff7/cdo.pdf>.Accessed in 2021-01-30.

SHIH, Y. Y. et al. Comparison of Primary Production Using in situ and Satellite-Derived Values at the SEATS Station in the South China Sea. Frontiers in Marine Science. 8, 747763, 2021. DOI: https://doi.org/10.3389/fmars.2021.747763

STEMMANN, L.; BOSS, E. Plankton and particle size and packaging: from determining optical properties to driving the biological pump. Annual Review of Marine Science. 4, 263-290, 2012. DOI: https://doi.org//10.1146/annurev-marine-120710-100853

TAKAHASHI, T., SUTHERLAND, S. C., KOZYR, A. Global ocean surface water partial pressure of CO2 database:Measurements performed during 1957–2016 (version 2016). ORNL/CDIAC-161, NDP-088 (V2015), CarbonDioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,Tennessee.Dataset,2017.Documentavailableat<https://odv.awi.de/fileadmin/user_upload/odv/data/LDEO_Database/NDP-088_V2016.pdf>. Accessed in 31July 2020

TILSTONE, G. H. et al. Comparison of new and primary production models using SeaWiFS data in contrasting hydrographic zones of the northern North Atlantic. Remote Sens. Environ. 156, 473–489, 2015. DOI: https://doi.org/10.1016/j.rse.2014.10.013

TITAUD, O.; CONCHON, A.; LEHODEY, P. PRODUCT USER MANUAL for the Global Ocean Low and Mid Trophic Levels Biomass Content Hindcast Product, (3). 2019. Available at <https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-033.pdf>. Accessed February 21, 2022.

TOLMAN, H. L. User manual and system documentation of WAVEWATCH III TM version 3.14. MMABContribution,276,220,2009.Technicalnote.<https://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf>. Accessed March 27, 2022.

VALSALA, V.; MAKSYUTOV, S. Simulation and assimilation of global ocean pCO2 and air–sea CO2 fluxes using ship observations of surface ocean pCO2 in a simplified biogeochemical offline model. In Tellus B: Chemical and Physical Meteorology. Vol. 62, Issue 5, pp. 821–840, 2010. Informa UK Limited. DOI: https://doi.org/10.1111/j.1600-0889.2010.00495.x

VARONA, H. L. mNC: A tool for Oceanographers and Meteorologists to easily create their NetCDF files using Matlab (1.0), 2021a. Zenodo. DOI: https://doi.org/10.5281/zenodo.5572749

VARONA, H. L. CalcPlotAnomaly: Matlab function set for the calculation and plotting of anomalies (1.01), 2021b. Zenodo. DOI: https://doi.org/10.5281/zenodo.5576889

VARONA, H. L. et al. Database of oceanographic anomalies and atmospheric surface fluxes for the study of climate change in the Brazilian Northeast. Latin American Data in Science. Vol. 2, Issue 1, 2022a. Data in Science Editora Itda. DOI: https://doi.org/10.53805/lads.v2i1.39

VARONA, H. L. et al. Monthly anomaly database of atmospheric and oceanic parameters in the tropical Atlantic Ocean. Data in Brief (p. 107969), 2022b. Elsevier BV. DOI: https://doi.org/10.1016/j.dib.2022.107969

WALTON, C. C. et al. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. Journal of Geophysical Research: Oceans, 103(C12), 27999–28012, 1998. American Geophysical Union (AGU). DOI: https://doi.org/10.1029/98jc02370

WANG O.; FUKUMORI, I.; FENTY I. ECCO Version 4 Release 4 User Guide, 2020. Available online at https://ecco-group.org/docs/v4r4_user_guide.pdf>. Accessed February 2, 2022

WYSOCKI, L. A. et al. Spatial variability in the coupling of organic carbon, nutrients, and phytoplankton pigments in surface waters and sediments of the Mississippi River plume. Estuarine Coastal and Shelf Science, 69, 1-2, 47–63, 2006. DOI: https://doi.org/10.1016/j.ecss.2006.03.022

YU, L.; JIN, X.; WELLER, R. A. Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01, 64pp. 2008. Woods Hole. Massachusetts. Available at <ftp://159.226.119.59/ftp/ds135_OAFLUX-v3netheat_1_1day_netcdf/OAFlux_TechReport_3rd_release.pdf>. Accessed February 3, 2022.

ZENDER, C. S. Analysis of self-describing gridded geoscience data with NetCDF Operators (NCO). Environmental Modelling & Software. 23, 10–11, 1338–1342, 2008. Elsevier BV. DOI: https://doi.org/10.1016/j.envsoft.2008.03.004

ZHOU, K. et al. Impact of physical and biogeochemical forcing on particle export in the South China Sea. Prog. Oceanogr. 187, 102403, 2020. DOI: https://doi.org//10.1016/j.pocean.2020.102403

ZUO, H. et al. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea-ice: a description of the system and assessment. Copernicus GmbH. 2019. DOI: https://doi.org/10.5194/os-2018-154

APPENDICES

Table 2.- Main characteristics of created datasets: DACS-BGC, DACS-PHY, DACS-CHEM, DACS-BIO, DACS-OCE, DACS-WAVE (physical and biogeochemical parameter anomalies database in the Caribbean Sea). (Continue)

Data source	Data type	Final dataset	Time range	Frequency	Resolution	Filenames
CO2 Flux (VALSALA; MAKSYUTOV, 2010; TAKAHASHI; SUTHERLAND; KOZYR, 2017)	Reanalysis (assimilated in-situ data)	DACS-BGC	Jan. 1980 to Dec. 2009	Monthly means	1.0°	anom_mmCO2Flux_CA.nc
GLOBAL_REANALYSIS_ BIO_001_029 (MOI, 2018; PERRUCHE, 2018)	Reanalysis	DACS-BGC	Jan. 1993 to Dec. 2020	Monthly means	0.25°	anom_BGC_001_029_CA.nc
MODIS_Aqua_chlor-a (NASA, 2014)	Observed (Satellite)	DACS-BGC	Aug. 2002 to Sep. 2021	Monthly means	0.0416667°	anom_mmMODIS_Aqua_CHLORA_C A.nc
	Reanalysis (Assimilating the			Daily means		anom_dyGPCP_CA.nc
GPCP (ADLER et al., 2003)	combination of precipitation available from different satellite sources)	DACS-PHY	Oct. 1996 to Oct. 2020	Monthly means	1.0°	anom_mmGPCP_CA.nc
MERRA2 (GELARO et	Description		law 4000 to law 2020	Daily means	0.5%	anom_dyMERRA2_CA.nc
al., 2017)	Reanalysis	DACS-PHY	Jan. 1980 to Jan. 2020	Monthly means	0.5	anom_mmMERRA2_CA.nc
MODIS- Aqua/Terra level 3 Thermal (WALTON et a., 1998; BROWN; MINNETT, 1999)	Observed (Satellite)	DACS-PHY	Aug. 2002 to Sep. 2021	Monthly means	0.0416667°	anom_mmMODIS_Aqua_SST_CA.nc

Table 2.- Main characteristics of created datasets: DACS-BGC, DACS-PHY, DACS-CHEM, DACS-BIO, DACS-OCE, DACS-WAVE (physical and biogeochemical parameter anomalies database in the Caribbean Sea). (Continued)

Data source	Data type	Final dataset	Time range	Frequency	Resolution	Filenames
				6 hours means		anom_6hrNCEP2_CA.nc
NCEP2 (KALNAY et al., 1996)	Reanalysis	DACS-PHY	Jan. 1948 to Dec. 2021	Daily means	2.5°	anom_dyNCEP2_CA.nc
				Monthly means		anom_mmNCEP2_CA.nc
	Integrates satellite			Daily means		anom_dyOAFLUX_CA.nc
OAFLUX (only evaporation, YU; JIN.; WELLER, 2008)	observations with surface moorings, ship reports, and atmospheric model reanalyzed surface	DACS-PHY	Jan. 1985 to Jun. 2019	Monthly means	1.0°	anom_mmOAFLUX_CA.nc
SMOS (KERR et al.,	Observed (Satellite)	DACS-PHY	Jan. 2010 to Dec. 2020	4 days means	0.259366°	anom_4dySMOS_CA.nc
2001)	Observed (satellite)			Monthly means		anom_mmSMOS_CA.nc
SODA (CARTON; GIESE, 2008)	Reanalysis	DACS-PHY	Jan. 1980 to Dec. 2017	Monthly means	0.5°	anom_mmSODA_CA.nc
				3 hours means		anom_3hrWW3_CA.nc
WAVEWATCH3 (TOLMAN 2009)	Reanalysis	DACS-PHY	Jan. 1997 to May. 2019	Daily means	1.25° × 1.0°	anom_dyWW3_CA.nc
(10210, 11, 2003)				Monthly means		anom_mmWW3_CA.nc
MULTIOBS_GLO_BIO_ CARBON_SURFACE_RE P_015_008 (MOI, 2019a; CHAU; GEHLEN; CHEVALLIER, 2020)	Reprocessed satellite observations	DACS-CHEM	Jan. 1985 to Dec. 2020	Monthly means	1°	92069.nc

Table 2.-Main characteristics of created datasets: DACS-BGC, DACS-PHY, DACS-CHEM, DACS-BIO, DACS-OCE, DACS-WAVE (physical and biogeochemical parameter anomalies database in the Caribbean Sea). (Continued)

Data source	Data type	Final dataset	Time range	Frequency	Resolution	Filenames	
MULTIOBS_GLO_BIO_ BGC 3D REP 015 01				Weekly means	0.25°	92068.nc	
0 (MOI, 2020; SAUZEDE; RENOSH; CLAUSTRE, 2021)	Reprocessed satellite observations	DACS-CHEM	Jan. 1998 to Dec. 2019	Monthly means		92067.nc	
						92070.nc	
WAVERYS - GLOBAL_MULTIYEAR_ WAV_001_032 (MOL_2019b)				3 hourly means		92071.nc	
						92072.nc	
	Doonalysis (Assimilated			Daily means 0.2°			92073.nc
	Reanalysis (Assimilated	DACS-WAVE	Jan. 1993 to Dec. 2020		92074.nc		
	Satellite data)				92075.nc		
(1017, 20135)						92076.nc	
			Monthly means	Monthly means	92077.nc		
						92078.nc	
						anom_dyBIO_G1-CA.nc	
GLOBAL_MULTIYEAR_				Daily means		anom_dyBIO_G2-CA.nc	
BGC_001_033			L 4000 L D 2040		0.000000	anom_dyBIO_G3-CA.nc	
	Reanalysis	DACS-BIO	Jan. 1998 to Dec. 2019		0.083333	anom mmBIO G1-CA.nc	
2010)				Monthly means		anom_mmBIO_G2-CA.nc	
2019)						anom_mmBIO_G3-CA.nc	
MULTIOBS_GLO_BIO_	Depressed satellite			Weekly		anom_wkMOBS-BGC015010-CA.nc	
BGC_3D_REP_015_01 0 (MOI, 2020)	observations	DACS-BIO	Jan. 1998 to Dec. 2019	Monthly	0.25°	anom_mmMOBS-BGC015010-CA.nc	

Table 2.- Main characteristics of created datasets: DACS-BGC, DACS-PHY, DACS-CHEM, DACS-BIO, DACS-OCE, DACS-WAVE (physical and biogeochemical parameter anomalies database in the Caribbean Sea). (Conclusion)

Data source	Data type	Final dataset	Time range	Frequency	Resolution	Filenames
OCEANCOLOUR_GLO_ CHL_L4_REP_OBSERV ATIONS_009_082 (MOI, 2016)	Reprocessed satellite observations	DACS-BIO	Jul. 2007 to Jun. 2021	Monthly	0.0416667°	anom_mmOCOL-009082-CA.nc
ASCAT (BENTAMY; FILLON, 2011)	Satellite observations	DACS-OCE	Mar. 2007 to Dec. 2021	Daily Monthly	0.25°	anom_dyASCAT-CA.nc anom_mmASCAT-CA.nc
DASK (KIM; HWANG; CHOI, 2015)	Reanalysis	DACS-OCE	Jan. 1947 to Dec. 2012	Monthly	1 x ~1°	anom_mmDASK-WT-CA.nc anom_mmDASK-CURR-CA.nc anom_mmDASK-TS-CA.nc
ECCO-V4r4 (FORGET et al., 2015; WANG et al., 2020)	Reanalysis	DACS-OCE	Jan. 1992 to Nov. 2017	Monthly	0.5°	anom_mmECCO-OCE-CA.nc anom_mmECCO-FLUX-CA.nc
GODAS (BEHRINGER, 2007)	Reanalysis	DACS-OCE	Jan. 1980 to Oct. 2021	Monthly	1 x 0.333°	anom_mmGODAS-CURR-CA.nc anom_mmGODAS-SALT-CA.nc anom_mmGODAS-TEMP-CA.nc anom_mmGODAS-WT-CA.nc anom_mmGODAS-FLUX-CA.nc
ORA-S5 (ZUO et al., 2019)	Reanalysis	DACS-OCE	Jan. 1979 to Dec. 2018	Monthly	1°	anom_mmORAS5-CA.nc

Parameter name	Description	Unit	Dataset
co2	CO ₂ flux	mole/m ² /sec	DACS-BGC
spco2	Surface CO ₂ partial pressure	Ра	DACS-BGC
o2	Dissolved Oxygen mole concentration	mmol/m ³	DACS-BGC
chl	Total Chlorophyll mass concentration	mg/m ³	DACS-BGC
no3	Nitrate mole concentration	mmol/m ³	DACS-BGC
po4	Phosphate mole concentration	mmol/m ³	DACS-BGC
phyc	Total Phytoplankton mole concentration	mmol/m ³	DACS-BGC
Si	Dissolved Silicate mole concentration	mmol/m ³	DACS-BGC
ph	рН	1	DACS-BGC
nppv	Total Primary Production of Phyto (biomass) expressed as carbon per unit volume	mg/m³/day	DACS-BGC
fe	Dissolved Iron mole concentration	mmol/m ³	DACS-BGC
chlor	Chlorophyll concentration, OCI algorithm	mg/m ³	DACS-BGC
precip	Daily precipitation rate	mm/day	DACS-PHY
lwgab	Downward (absorbed) longwave flux	w/m²	DACS-PHY
qv2m	2m air humidity	kg/kg	DACS-PHY
rainocn	precipitation over the ocean	kg/m²/s	DACS-PHY
slp	Atmospheric sea level pressure	Ра	DACS-PHY
swgdn	Downward shortwave flux	w/m²	DACS-PHY
t2m	Air temperature at 2 m	°C	DACS-PHY
u10m	Zonal wind speed at 10 m	m/s	DACS-PHY
v10m	Meridional wind speed at 10 m	m/s	DACS-PHY
day_sst	Daily sea surface temperature	°C	DACS-PHY
night_sst	Nightly sea surface temperature	°C	DACS-PHY
sst	Sea surface temperature	°C	DACS-PHY
air	Air temperature	°К	DACS-PHY
omega	Vertical velocity	Pa/s	DACS-PHY
rhum	Relative humidity	%	DACS-PHY
uwnd	Zonal wind velocity	m/s	DACS-PHY
vwnd	Meridional wind velocity	m/s	DACS-PHY
evapr	Daily mean evaporation rate	cm/yr	DACS-PHY
SSS	Unbiased Sea Surface Salinity	pss	DACS-PHY

Table 3.- Description of parameters in anomaly databases for the Caribbean Sea. DACS-BGC (biogeochemical), DACS-PHY (physical), DACS-CHEM (chemical) DACS-BIO (biological) and DACS-WAVE (sea wave). (Continue)

Parameter name	Description	Unit	Dataset
temp	Sea water potential temperature	°C	DACS-PHY
salt	Sea water salinity	psu	DACS-PHY
Wt	Vertical velocity of the ocean current	m/s	DACS-PHY
ssh	Sea surface height above geoid	m	DACS-PHY
mlt	Mixed layer depth determined by temperature criteria	m	DACS-PHY
mlp	Depth of potential density mixed layer	m	DACS-PHY
mls	Mixed layer depth determined by salinity criteria	m	DACS-PHY
net_heating	Surface ocean heat flux coming through coupler and mass transfe	r Watts/m ²	DACS-PHY
prho	Potential density referenced to 0 dbar	Kg/m ³	DACS-PHY
u	Zonal component of current velocity	m/s	DACS-PHY
v	Meridional component of current velocity	m/s	DACS-PHY
taux	Zonal wind stress component (downward)	N/m ²	DACS-PHY
tauy	Meridional wind stress component (downward)	N/m ²	DACS-PHY
perpwsfc	Surface primary wave mean period	S	DACS-PHY
htsgwsfc	Surface significant wave height of wind waves and swell	m	DACS-PHY
mnkc_epi	Mass content of epipelagic micronekton expressed as wet weight in seawater	g m ⁻²	DACS-BIO
mnkc_hmlmeso	Mass content of highly migrant lower mesopelagic micronekton expressed as wet weight in seawater	g m ⁻²	DACS-BIO
mnkc_lmeso	Mass content of lower mesopelagic micronekton expressed as we weight in seawater	t g m⁻²	DACS-BIO
mnkc_umeso	Mass content of upper mesopelagic micronekton expressed as we weight in seawater	et g m⁻²	DACS-BIO
mnkc_mumeso	Mass content of migrant upper mesopelagic micronekton expressed as wet weight in seawater	g m ⁻²	DACS-BIO
mnkc_mlmeso	Mass content of migrant lower mesopelagic micronekton expressed as wet weight in seawater	g m⁻²	DACS-BIO
zooc	Mass content of zooplankton expressed as carbon in seawater	g m⁻²	DACS-BIO
zeu	Euphotic zone depth	m	DACS-BIO
npp	Net primary productivity of biomass expressed as carbon in seawater	mg m ⁻² day ⁻¹	DACS-BIO
рос	Mass concentration of particulate organic matter expressed as carbon in seawater	mg m ⁻³	DACS-BIO
NANO	Mass concentration of nanophytoplankton expressed as chlorophyll in seawater	mg m⁻³	DACS-BIO

Table 3.- Description of parameters in anomaly databases for the Caribbean Sea. DACS-BGC (biogeochemical), DACS-PHY (physical), DACS-CHEM (chemical) DACS-BIO (biological) and DACS-WAVE (sea wave). (Continued)

Parameter name	Description	Unit	Dataset
PICO	Mass concentration of picophytoplankton expressed as chlorophyll in seawater	mg m ⁻³	DACS-BIO
PROKAR	Mass concentration of prokaryotes expressed as chlorophyll in seawater	mg m ⁻³	DACS-BIO
DINO	Mass concentration of dinophytes expressed as chlorophyll in seawater	mg m ⁻³	DACS-BIO
DIATO	Mass concentration of diatoms expressed as chlorophyll in seawater	mg m ⁻³	DACS-BIO
НАРТО	Mass concentration of haptophytes expressed as chlorophyll in seawater	mg m ⁻³	DACS-BIO
MICRO	Mass concentration of microphytoplankton expressed as chlorophyll in seawater	mg m ⁻³	DACS-BIO
GREEN	Mass concentration of greenalgae expressed as chlorophyll in seawater	mg m ⁻³	DACS-BIO
PROCHLO	Mass concentration of prochlorophytes expressed as chlorophyll in seawater	mg m ⁻³	DACS-BIO
рос	Mass concentration of particulate organic matter expressed as carbon in seawater	mg m ⁻³	DACS-CHEM
chl	Mass concentration of chlorophyll-a in seawater	mg m ⁻³	DACS-CHEM
spco2	Surface partial pressure of carbon dioxide in seawater	Ра	DACS-CHEM
fgco2	Surface downward mass flux of carbon dioxide expressed as carbon	Kg m ⁻² s ⁻¹	DACS-CHEM
ph	Seawater pH reported on total scale	1	DACS-CHEM
VHM0_SW1	Sea surface primary swell wave significant height	m	DACS-WAVE
VTM01_SW1	Sea surface primary swell wave mean period	S	DACS-WAVE
VTPK	Wave period at spectral peak. Peak period	S	DACS-WAVE
VHM0	Spectral significant wave height	m	DACS-WAVE
VHM0_WW	Sea surface wind wave significant height	m	DACS-WAVE
VTM01_WW	Sea surface wind wave mean period	S	DACS-WAVE
dbssbitl	bottom ocn isothermal layer geometric depth below sea surface	m	DACS-OCE
dbssbmxl	bottom ocn mixed layer geometric depth below sea surface	m	DACS-OCE
sltflsfc	salt flux at surface	g/cm²/s	DACS-OCE
sshgsfc	sea surface height relative to geoid		DACS-OCE
thflxsfc	total downward heat flux at surface (downward is positive)	w/m²	DACS-OCE

Table 3.- Description of parameters in anomaly databases for the Caribbean Sea. DACS-BGC (biogeochemical), DACS-PHY (physical), DACS-CHEM (chemical) DACS-BIO (biological) and DACS-WAVE (sea wave). (Continued)

Parameter name	Description	Unit	Dataset
uwnd	eastward wind speed	m/s	DACS-OCE
vwnd	northward wind speed	m/s	DACS-OCE
wsp	wind speed	m/s	DACS-OCE
saltydsl	(profile) salinity	kg/kg	DACS-OCE
potdsl	(profile) potential temperature	°К	DACS-OCE
dzdtdsl	(profile) geometric vertical velocity	m/s	DACS-OCE
vomecrtn	meridional current	m/s	DACS-OCE
votemper	potential temperature	°C	DACS-OCE
vosaline	salinity	psu	DACS-OCE
sossheig	sea surface height	m	DACS-OCE
vozocrte	zonal current	m/s	DACS-OCE
exfevap	evaporation, > 0 increases salinity	m/s	DACS-OCE
exfewind	eastward 10-m wind velocity over open water, >0 increases evel	m/s	DACS-OCE
exfhl	latent heat flux into ocean, >0 increases theta	w/m²	DACS-OCE
exfhs	sensible heat flux into ocean, >0 increases theta	w/m²	DACS-OCE
exflwdn	downward longwave radiation, >0 increases theta	w/m²	DACS-OCE
exflwnet	net upward longwave radiation, >0 decreases theta	w/m²	DACS-OCE
exfnwind	northward 10-m wind velocity over open water, >0 increases nvel	m/s	DACS-OCE
exfpreci	precipitation, > 0 decreases salinity	m/s	DACS-OCE
exfpress	atmospheric pressure field	n/m²	DACS-OCE
exfqnet	net upward heat flux (turb+rad), >0 decreases theta	w/m²	DACS-OCE
exfroff	river runoff, > 0 decreases salinity	m/m	DACS-OCE
exfswdn	downward shortwave radiation, >0 increases theta	w/m²	DACS-OCE
exfswnet	net upward shortwave radiation, >0 decreases theta	w/m²	DACS-OCE
exftaue	eastward surface wind stress over open water, >0 increases evel	n/m²	DACS-OCE
exftaun	northward surf. wind stress over open water, >0 increases nvel	n/m²	DACS-OCE
exfwspee	10-m wind speed modulus (>= 0)	m/s	DACS-OCE
mxldepth	mixed-layer depth (>0)	m	DACS-OCE
sflux	total salt flux (match salt-content variations), >0 increases salt	g/m²/s	DACS-OCE

Table 3.- Description of parameters in anomaly databases for the Caribbean Sea. DACS-BGC (biogeochemical), DACS-PHY (physical), DACS-CHEM (chemical) DACS-BIO (biological) and DACS-WAVE (sea wave). (Continued)

Parameter name	Description	Unit	Dataset
siatmfw	net freshwater flux from atmosphere & land (+=down)	kg/m²/s	DACS-OCE
siatmqnt	net atmospheric heat flux, >0 decreases theta	w/m ²	DACS-OCE
ssh	surface height anomaly adjusted with global steric height change and sea-ice load	m	DACS-OCE
tflux	total heat flux (match heat-content variations), >0 increases theta	w/m²	DACS-OCE
ocefwflx	net surface fresh-water flux into the ocean (+=down), >0 decreases salinity	kg/m²/s	DACS-OCE
oceqnet	net surface heat flux into the ocean (+=down), >0 increases theta	w/m²	DACS-OCE
oceqsw	net short-wave radiation (+=down), >0 increases theta	w/m²	DACS-OCE
ocespdep	salt plume depth based on density criterion (>0)	m	DACS-OCE
ocespflx	net surface salt flux rejected into the ocean during freezing, (+=down)	kg/m²/s	DACS-OCE
evel	eastward component of velocity	m/s	DACS-OCE
nvel	northward component of velocity	m/s	DACS-OCE
salt	salinity	psu	DACS-OCE
theta	potential temperature	°C	DACS-OCE
uvel	x-comp of velocity (not necessary eastward)	m/s	DACS-OCE
vvel	y-comp of velocity (not necessary northward)	m/s	DACS-OCE
u	i-current	m/s	DACS-OCE
v	j-current	m/s	DACS-OCE
sfc_hflux_pme	heat flux (relative to 0c) from pme transfer of water across ocean surface	w/m²	DACS-OCE
river	mass flux of river (runoff + calving) entering ocean	kg/m³*m/s	DACS-OCE
mld	mixed layer depth determined by density criteria	m	DACS-OCE
pme	net (precip-evap)(kg/(m2*sec) into ocean, divided by 1035kg/m3	m/s	DACS-OCE
temp	potential temperature	°C	DACS-OCE
wt	dia-surface velocity t-points	m/s	DACS-OCE
uogrddsl	(profile) u-component of current	m/s	DACS-OCE
uflxsfc	surface zonal momentum flux	n/m²	DACS-OCE
vogrddsl	(profile) v-component of current	m/s	DACS-OCE
vflxsfc	surface meridional momentum flux	n/m²	DACS-OCE

Table 3.- Description of parameters in anomaly databases for the Caribbean Sea. DACS-BGC (biogeochemical), DACS-PHY (physical), DACS-CHEM (chemical) DACS-BIO (biological) and DACS-WAVE (sea wave). (Continued)

Table 4.- Similar parameters based on their source dataset. (Continue)

Similar	Filonama	Source datasate	Final
Similar	Filename	Source datasets	Final
chl	22000 BCC 001 020 CA 25		
cill	anom_BGC_001_029_CA.nc	GLOBAL_REANALTISIS_BIO_001_029	DACS-BGC
chior			DACS-BGC
chl	92068.nc 92067.nc		DACS-CHEM
spco2	anom_BGC_001_029_CA.nc	GLOBAL_REANALYSIS_BIO_001_029	DACS-BCG
spco2	92069.nc	MULTIOBS_GLO_BIO_CARBON_SURFAC E_REP_015_008	DACS-CHEM
ph	anom_BGC_001_029_CA.nc	GLOBAL_REANALYSIS_BIO_001_029	DACS-BGC
ph	92069.nc	MULTIOBS_GLO_BIO_CARBON_SURFAC E_REP_015_008	DACS-CHEM
nppv	anom_BGC_001_029_CA.nc	GLOBAL_REANALYSIS_BIO_001_029	DACS-BGC
npp	anom_dyBIO_G3-CA.nc anom mmBIO G3-CA.nc	GLOBAL_MULTIYEAR_BGC_001_033	DACS-BIO
	92067.nc	MULTIOBS_GLO_BIO_BGC_3D_REP_015	
рос	92068.nc		DACS-CHEM
	anom_wkBIO_BGC015010-CA.nc	MULTIOBS_GLO_BIO_BGC_3D_REP_015	
рос	anom_mmBIO_BGC015_010-CA.nc	_010	DACS-BIO
lwgab	anom_dyMERRA2_CA.nc	MERRA2	ΠΔCS-ΡΗΥ
in gub	anom_mmMERRA2_CA.nc	MENNAZ	DACSTIT
exflwdn	anom_mmECCO-FLUX-CA.nc	ECCO-V4r4	DACS-OCE
swgdn	anom_dyMERRA2_CA.nc	MERRA2	DACS-PHY
-	anom_mmMERRA2_CA.nc		
extswdn	anom_mmECCU-FLUX-CA.nc	ECCO-V4r4	DACS-OCE
u10m	anom_dyMERRA2_CA.nc	MERRA2	DACS-PHY
	anom_html/terraz_ca.nc		
uwnd	anom_drNCEP2_CA.ne	NCEP2	DACS-PHY
uwiid	anom mmNCEP2 CA nc		DACSTIT
	anom dvASCAT-CA		
uwnd	anom mmASCAT-CA	ASCAT	DACS-OCE
	anom dyMERRA2 CA.nc		
v10m	anom_mmMERRA2_CA.nc	MERRA2	DACS-PHY
	anom_6hrNCEP2_CA.nc		
vwnd	anom_dyNCEP2_CA.nc	NCEP2	DACS-PHY
	anom_mmNCEP2_CA.nc		
www.nd	anom_dyASCAT-CA	Δςζατ	
vwnu	anom_mmASCAT-CA	ASCAT	DACS_OCE
t2m	anom_dyMERRA2_CA.nc	MERRA2	ΠΔΓς-DHV
(2111	anom_mmMERRA2_CA.nc		DACSFIII
	anom_6hrNCEP2_CA.nc		
air	anom_dyNCEP2_CA.nc	NCEP2	DACS-PHY
	anom_mmNCEP2_CA.nc		
sst	anom_mmMODIS_Aqua_SST_CA.nc	MODIS Aqua/Terra level 3 Thermal	DACS-PHY
temp	anom_mmSODA_CA.nc	SODA	DACS-PHY

Similar	Filename	Source datasets	Final	
parameters			datasets	
ssh	anom_mmSODA_CA.nc	SODA	DACS-PHY	
sshgsfc	anom_mmGODAS-FLUX-CA.nc	GODAS	DACS-OCE	
mlt	anom_mmSODA_CA.nc	SODA	DACS-PHY	
mls	anom_mmSODA_CA.nc	SODA	DACS-PHY	
mlp	anom_mmSODA_CA.nc	SODA	DACS-PHY	
mxldepth	anom_mmECCO-FLUX-CA.nc	ECCO-V4r4	DACS-OCE	
mld	anom_mmECCO-FLUX-CA.nc	ECCO-V4r4	DACS-OCE	
SSS	anom_4dySMOS_CA.nc anom_mmSMOS_CA.nc	SMOS	DACS-PHY	
salt	anom_mmSODA_CA.nc	SODA	DACS-PHY	
taux	anom_mmSODA_CA.nc	SODA	DACS-PHY	
exftaue	anom_mmECCO-FLUX-CA.nc	ECCO-V4r4	DACS-OCE	
tauy	anom_mmSODA_CA.nc	SODA	DACS-PHY	
exftaun	anom_mmECCO-FLUX-CA.nc	ECCO-V4r4	DACS-OCE	
	anom_3hrWW3_CA.nc			
perpwsfc	anom_dyWW3_CA.nc	WAVEWATCH3	DACS-PHY	
	anom_mmWW3_CA.nc			
VTPK	92071.nc	WAVERYS - GLOBAL_MULTIYEAR_WAV_001_032	DACS-WAVE	
	anom_3hrWW3_CA.nc			
htsgwsfc	anom_dyWW3_CA.nc	WAVEWATCH3	DACS-PHY	
	anom_mmWW3_CA.nc			
	92074.nc	WAVERYS -		
	92077.nc	GLOBAL_MULTIYEAR_WAV_001_032	DACS-WAVE	

Table 4.- Similar parameters based on their source dataset. (Conclusion)